Part Number Hot Search : 
X1N5297U 55140 74HC15 NLD06 C68HC11 RB152 STV7618 CZMK15V
Product Description
Full Text Search
 

To Download IRF1404PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRF1404PBF hexfet ? power mosfet seventh generation hexfet ? power mosfets from international rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. this benefit, combined with the fast switching speed and ruggedized device design that hexfet power mosfets are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications including automotive. the to-220 package is universally preferred for all automotive-commercial-industrial applications at power dissipation levels to approximately 50 watts. the low thermal resistance and low package cost of the to-220 contribute to its wide acceptance throughout the industry. s d g absolute maximum ratings parameter typ. max. units r jc junction-to-case ??? 0.45 r cs case-to-sink, flat, greased surface 0.50 ??? c/w r ja junction-to-ambient ??? 62 thermal resistance v dss = 40v r ds(on) = 0.004 ? i d = 202a   advanced process technology  ultra low on-resistance  dynamic dv/dt rating  175c operating temperature  fast switching  fully avalanche rated  automotive qualified (q101)  lead-free description 1 to-220ab parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 202  i d @ t c = 100c continuous drain current, v gs @ 10v 143  a i dm pulsed drain current   808 p d @t c = 25c power dissipation 333 w linear derating factor 2.2 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy  620 mj i ar avalanche current see fig.12a, 12b, 15, 16 a e ar repetitive avalanche energy  mj dv/dt peak diode recovery dv/dt  1.5 v/ns t j operating junction and -55 to + 175 t stg storage temperature range -55 to + 175 soldering temperature, for 10 seconds 300 (1.6mm from case ) c mounting torque, 6-32 or m3 screw 10 lbf?in (1.1n?m) www.kersemi.com
 2 parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 40 ??? ??? v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.039 ??? v/c reference to 25c, i d = 1ma r ds(on) static drain-to-source on-resistance ??? 0.0035 0.004 ? v gs = 10v, i d = 121a  v gs(th) gate threshold voltage 2.0 ??? 4.0 v v ds = 10v, i d = 250a g fs forward transconductance 76 ??? ??? s v ds = 25v, i d = 121a ??? ??? 20 a v ds = 40v, v gs = 0v ??? ??? 250 v ds = 32v, v gs = 0v, t j = 150c gate-to-source forward leakage ??? ??? 200 v gs = 20v gate-to-source reverse leakage ??? ??? -200 na v gs = -20v q g total gate charge ??? 131 196 i d = 121a q gs gate-to-source charge ??? 36 ??? nc v ds = 32v q gd gate-to-drain ("miller") charge ??? 37 56 v gs = 10v  t d(on) turn-on delay time ??? 17 ??? v dd = 20v t r rise time ??? 190 ??? i d = 121a t d(off) turn-off delay time ??? 46 ??? r g = 2.5 ? t f fall time ??? 33 ??? r d = 0.2 ?  between lead, ??? ??? 6mm (0.25in.) from package and center of die contact c iss input capacitance ??? 5669 ??? v gs = 0v c oss output capacitance ??? 1659 ??? pf v ds = 25v c rss reverse transfer capacitance ??? 223 ??? ? = 1.0mhz, see fig. 5 c oss output capacitance ??? 6205 ??? v gs = 0v, v ds = 1.0v, ? = 1.0mhz c oss output capacitance ??? 1467 ??? v gs = 0v, v ds = 32v, ? = 1.0mhz c oss eff. effective output capacitance  ??? 2249 ??? v gs = 0v, v ds = 0v to 32v nh electrical characteristics @ t j = 25c (unless otherwise specified) l d internal drain inductance l s internal source inductance ??? ??? s d g i gss ns 4.5 7.5 i dss drain-to-source leakage current   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11)  i sd 121a, di/dt 130a/s, v dd v (br)dss , t j 175c    starting t j = 25c, l = 85 h r g = 25 ? , i as = 121a. (see figure 12)  pulse width 400s; duty cycle 2%. s d g parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) ??? ??? showing the i sm pulsed source curre nt integral reverse (body diode)  ??? ??? p-n junction diode. v sd diode forward voltage ??? ??? 1.5 v t j = 25c, i s = 121a, v gs = 0v  t rr reverse recovery time ??? 78 117 ns t j = 25c, i f = 121a q rr reverse recoverycharge ??? 163 245 nc di/dt = 100a/s   t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) source-drain ratings and characteristics 202  808   c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss  calculated continuous current based on maximum allowable junction temperature. package limitation current is 75a. www.kersemi.com
 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 1 10 100 1000 0.1 1 10 100 20s pulse width t = 25 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 1 10 100 1000 0.1 1 10 100 20s pulse width t = 175 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 10 100 1000 4 5 6 7 8 9 10 11 12 v = 25v 20s pulse width ds v , gate-to-source voltage (v) i , drain-to-source current (a) gs d t = 25 c j t = 175 c j -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 2.5 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 202a www.kersemi.com
 4 fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 0 50 100 150 200 0 4 8 12 16 20 q , total gate charge (nc) v , gate-to-source voltage (v) g gs for test circuit see figure i = d 13 121a v = 20v ds v = 32v ds 0.1 1 10 100 1000 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 v ,source-to-drain voltage (v) i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j t = 175 c j 1 10 100 1000 10000 1 10 100 operation in this area limited by r ds(on) single pulse t t = 175 c = 25 c j c v , drain-to-source voltage (v) i , drain current (a) i , drain current (a) ds d 10us 100us 1ms 10ms 1 10 100 v ds , drain-to-source voltage (v) 0 2000 4000 6000 8000 10000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd www.kersemi.com
 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10a. switching time test circuit v ds 90% 10% v gs t d(on) t r t d(off) t f fig 10b. switching time waveforms   
 1     0.1 %       
 + -   25 50 75 100 125 150 175 0 20 40 60 80 100 120 140 160 180 200 220 t , case temperature ( c) i , drain current (a) c d limited by package 0.001 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response)
 6 fig 12c. maximum avalanche energy vs. drain current q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v fig 14. threshold voltage vs. temperature -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 1.0 2.0 3.0 4.0 - v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = -250a 25 50 75 100 125 150 175 0 300 600 900 1200 1500 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom 49a 101a 121a
 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 300 350 400 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 10% duty cycle i d = 121a 1.0e-08 1.0e-07 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses 0.01
 8 p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - fig 17. for n-channel hexfet ? power mosfets         
              ?   ?   ? !  "#$$ ? % 
&""& ? '(!"  ? )"*  ? '+!"  &"   
 lead assignments 1 - gate 2 - drain 3 - source 4 - drain - b - 1.32 (.052) 1.22 (.048) 3x 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 4.69 (.185) 4.20 (.165) 3x 0.93 (.037) 0.69 (.027) 4.06 (.160) 3.55 (.140) 1.15 (.045) min 6.47 (.255) 6.10 (.240) 3.78 (.149) 3.54 (.139) - a - 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 3x 1.40 (.055) 1.15 (.045) 2.54 (.100) 2x 0.36 (.014) m b a m 4 1 2 3 notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 3 outline conforms to jedec outline to-220ab. 2 controlling dimension : inch 4 heatsink & lead measurements do n ot include burrs. hexfet 1- gate 2- drain 3- source 4- drain lead assignments igbts, copack 1- gate 2- collector 3- emitter 4- collector 

 dimensions are shown in millimeters (inches) 

  
 example: in the assembly line "c" t his is an ir f1010 lot code 1789 as s e mb le d on ww 19, 1997 part number assembly lot code dat e code ye ar 7 = 1997 line c week 19 logo rectifier int e r nat ional note: "p" in assembly line position indicates "lead-free"


▲Up To Search▲   

 
Price & Availability of IRF1404PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X